
Lecture05 - Feeling Loopy 1

➿
Lecture05 - Feeling Loopy

Tags

Outline
Turn-inable adjustments

Some notes on print and return

Loops, loops, more loops

Turn-inable adjustments
Assignment deadlines and release dates altered

We should discuss due dates...

There will be no Assignment10 - content will be folded into final project

Lab04 == Lab05

Lab06 will be completing Needleman-Wunsch

Lab07 will be implementing Smith-Waterman alignment

Lab turn-in policy adjustment

Printing & returning confusion
printing ! returning

BUT! The REPL prints return values (read evaluate print loop)

Compare:

function print_demo(a, b, c)
 @info a
 println(b)
 return c
 end

print_demo(1,2,3)

x = print_demo(4,5,6)

x

With

y = print_demo(7,8,9);

y

z = println(10)

z

typeof(z)

All julia functions return something

Lecture05 - Feeling Loopy 2

sometimes that something is nothing

Default is the last statement - that is:

function explicit(thing)
 return thing * 2
end

is the same as

function implicit(thing)
 thing * 2
end

Sometimes the thing return ed is the point ("fruitful" functions)

Sometimes it's just a side-effect

Looping
We often want to perform the same operation on multiple values

One way to do this is with a loop

julia> for num in 0:2:10
 @info "The loop has hit $num"
 end
[Info: The loop has hit 0
[Info: The loop has hit 2
[Info: The loop has hit 4
[Info: The loop has hit 6
[Info: The loop has hit 8
[Info: The loop has hit 10

There are many ways to loop...

for loops go through each item in a sequence

julia> for c in "Hello!"
 @info c
 end
[Info: H
[Info: e
[Info: l
[Info: l
[Info: o
[Info: !

while loops go until a condition is met

julia> counter = 0
0

julia> while counter < 5
 counter += 1
 @info "We've gotten into the loop $counter times!"
 end
[Info: We've gotten into the loop 1 times!
[Info: We've gotten into the loop 2 times!
[Info: We've gotten into the loop 3 times!
[Info: We've gotten into the loop 4 times!
[Info: We've gotten into the loop 5 times!

But be careful that your condition will be met eventually...

julia> counter = 0
0

julia> while counter >= 0

Lecture05 - Feeling Loopy 3

 counter += 1
 @info "We've gotten into the loop $counter times!"
 end #...

map can apply a function to each item
and returns a Vector of the results

julia> function my_func(thing)
 @info "Here's the thing: $thing"
 return thing ^ 2
 end
my_func (generic function with 1 method)

julia> map(my_func, [1, "Hello, World!", 2.3])
[Info: Here's the thing: 1
[Info: Here's the thing: Hello, World!
[Info: Here's the thing: 2.3
3-element Vector{Any}:
 1
 "Hello, World!Hello, World!"
 5.28999999999999

filter applies a boolean function to each item, retains those that are true

julia> function my_bool(thing)
 @info "Here's the thing: $thing"
 return thing isa Int
 end
my_bool (generic function with 1 method)

julia> filter(my_bool, [1, "Hello, World!", 2.3])
[Info: Here's the thing: 1
[Info: Here's the thing: Hello, World!
[Info: Here's the thing: 2.3
1-element Vector{Any}:
 1

What is loopable?
anything that applies the "iterator" interface

OK... but what's that?

For this class, think Arrays, Tuples, Strings

For Dict s, you can iterate through keys, values, or both

Dictionary looping

julia> my_dict = Dict("bananas"=>2, "apples"=>5, "durian"=>0);

julia> for k in keys(my_dict) # note that dictionaries are not "ordered"
 @info "the key is $k"
 end
[Info: the key is bananas
[Info: the key is durian
[Info: the key is apples

julia> for v in values(my_dict)
 @info "the value is $v"
 end
[Info: the value is 2
[Info: the value is 0
[Info: the value is 5

julia> for (k,v) in my_dict
 @info "the key is $k, the value is $v"
 end
[Info: the key is bananas, the value is 2
[Info: the key is durian, the value is 0
[Info: the key is apples, the value is 5

https://docs.julialang.org/en/v1/manual/interfaces/#man-interface-iteration

Lecture05 - Feeling Loopy 4

Count and loop at the same time with enumerate

julia> counter = 0
0

julia> for k in keys(my_dict)
 counter += 1
 @info "the counter is $counter, the key is $k"
 end
[Info: the counter is 1, the key is bananas
[Info: the counter is 2, the key is durian
[Info: the counter is 3, the key is apples

julia> for (i, k) in enumerate(keys(my_dict))
 @info "the counter is $i, the key is $k"
 end
[Info: the counter is 1, the key is bananas
[Info: the counter is 2, the key is durian
[Info: the counter is 3, the key is apples

Debugging loops
 Go through one loop at a time (first(iter) and last(iter) can be very helpful)

 Go through a subset of the data (eg use indexing or enumerate)

 Add println or @info @warn statements

Lab05 (Lab04 in disguise)

