9
LectureO5 - Feeling Loopy

Tags

Outline

e Turn-inable adjustments
e Some notes on print and return

e Loops, loops, more loops

Turn-inable adjustments

o Assignment deadlines and release dates altered

e We should discuss due dates...
e There will be no Assignment10 - content will be folded into final project
o Lab04 == Lab05

e Lab06 will be completing Needleman-Wunsch

e LabO07 will be implementing Smith-Waterman alignment

e Lab turn-in policy adjustment

Printing & returning confusion

e printing != returning

e BUT! The REPL prints return values (read evaluate print loop)
Compare:

function print_demo(a, b, c)
@info a
println(b)
return c
end
print_demo(1, 2, 3)
X = print_demo(4,5,6)

X

With

print_demo(7,8,9);

<
1

N
1

println(10)
z

typeof(z)

All julia functions return something

Lecture05 - Feeling Loopy

e sometimes that something is nothing

o Default is the last statement - that is:

function explicit(thing)
return thing * 2
end

is the same as

function implicit(thing)
thing * 2
end

e Sometimes the thing return ed is the point (“fruitful” functions)

o Sometimes it's just a side-effect

Looping
o We often want to perform the same operation on multiple values

e One way to do this is with a loop

julia> for num in 0:2:10

@info "The loop has hit $num"

end

Info: The loop has hit
Info: The loop has hit
Info: The loop has hit
Info: The loop has hit
Info: The loop has hit
Info: The loop has hit 10

[B W W e W e B |
o oo A~ NO

e There are many ways to loop...
for loops go through each item in a sequence

julia> for c in "Hello!"
@info ¢
end
Info:
Info:
Info:
Info:
Info:
Info:

N e W e W e W e W |
— O —~ ~ @O T

while loops go until a condition is met

julia> counter = 0
(0]

julia> while counter < 5

counter += 1

@info "We've gotten into the loop $counter times!"

end

Info: We've gotten into the loop 1 times!
Info: We've gotten into the loop 2 times!
Info: We've gotten into the loop 3 times!
Info: We've gotten into the loop 4 times!
Info: We've gotten into the loop 5 times!

el e W e B e W |

But be careful that your condition will be met eventually...

julia> counter = 0
(0]

julia> while counter >= 0

Lecture05 - Feeling Loopy

counter += 1
@info "We've gotten into the loop $counter times!"
end #...

map can apply a function to each item

e and returns a vector of the results

julia> function my_func(thing)
@info "Here's the thing: $thing"
return thing A 2
end
my_func (generic function with 1 method)

julia> map(my_func, [1, "Hello, World!", 2.3])
[Info: Here's the thing: 1
[Info: Here's the thing: Hello, World!
[Info: Here's the thing: 2.3
3-element Vector{Any}:
1
"Hello, World!'Hello, World!"
5.28999999999999

filtter applies a boolean function to each item, retains those that are true

julia> function my_bool(thing)
@info "Here's the thing: $thing"
return thing isa Int
end
my_bool (generic function with 1 method)

julia> filter(my_bool, [1, "Hello, World!", 2.3])
[Info: Here's the thing: 1

[Info: Here's the thing: Hello, World!

[Info: Here's the thing: 2.3

1-element Vector{Any}:

1

What is loopable?
e anything that applies the "iterator" interface
o OK... but what's that?
o For this class, think Arrays, Tuples, Strings

e For nict s, you can iterate through keys, values, or both
Dictionary looping

julia> my_dict = Dict("bananas"=>2, "apples"=>5, "durian"=>0);

julia> for k in keys(my_dict) # note that dictionaries are not "ordered"
@info "the key is $k"
end
[Info: the key is bananas
[Info: the key is durian
[Info: the key is apples

julia> for v in values(my_dict)
@info "the value is $v"
end
[Info: the value is 2
[Info: the value is 0
[Info: the value is 5

julia> for (k,v) in my_dict
@info "the key is $k, the value is $v"
end
[Info: the key is bananas, the value is 2
[Info: the key is durian, the value is 0
[Info: the key is apples, the value is 5

Lecture05 - Feeling Loopy

https://docs.julialang.org/en/v1/manual/interfaces/#man-interface-iteration

Count and loop at the same time with ecnunerate

julia> counter = 0
(0]

julia> for k in keys(my_dict)
counter += 1
@info "the counter is $counter, the key is $k"
end
[Info: the counter is 1, the key is bananas
[Info: the counter is 2, the key is durian
[Info: the counter is 3, the key is apples

julia> for (i, k) in enumerate(keys(my_dict))
@info "the counter is $i, the key is $k"
end
[Info: the counter is 1, the key is bananas

[Info: the counter is 2, the key is durian
[Info: the counter is 3, the key is apples

Debugging loops
1. Go through one loop at a time (first(iter) and 1ast(iter) can be very helpful)
2. Go through a subset of the data (eg use indexing or enumerate)

3. Add println O @info @warn Statements

Lab05 (Lab04 in disguise)

Lecture05 - Feeling Loopy

